Вклад натурального ауто-IgM во врожденный иммунитет
DOI:
https://doi.org/10.15574/PP.2018.74.45Ключевые слова:
натуральные ауто-IgM антитела, иммунитет, В1-клеткиАннотация
Натуральные ауто-IgM синтезируются в B1-клетках (CD5+ мыши; CD20+CD27+CD43+CD70 — у людей) и играют существенную роль в защите организма от вторжения антигенов разного генеза, поддерживают иммунохимический гомеостаз организма, регулируя клиренс апоптических клеток, выполняют противовоспалительную функцию, регулируют аутореактивные антитела и удаляют протеины с незавершенным или дефектным фолдингом. Эти наблюдения стали толчком для поиска путей терапевтического применения натуральных ауто-IgM, увеличения их количества in vivo, а также применения моноклональных и поликлональных препаратов IgM.
Библиографические ссылки
Zaychik ASh, Poletaev AB, Churilov LP. (2013). Estestvennyie autoantitela, immunologicheskie teorii i preventivnaya meditsina. Vestnik Sankt-Peterburgskogo universiteta. 11; 2: 3–16.
Poletaev A.B. (2011). Novyie podhodyi v rannem vyiyavlenii patologicheskih izmeneniy v organizme cheloveka (immunohimicheskiy skrining kak osnova strategii perehoda ot lechebnoy k preventivnoy meditsine). Metod. ruk-vo dlya vrachey. 2-e izd. M.: MITs Immunkulus:. 64.
Poletaev A.B. (2010). Fiziologicheskaya immunologiya: estestvennyie autoantitela i problemyi nanomeditsinyi. M.: Miklosh: 218.
Adachi T, Harumiya S, Takematsu H, Kozutsumi Y, Wabl M, Fujimoto M, Tedder TF. (2011). CD22 serves as a receptor for soluble IgM. Eur. J. Immunol. 42(1): 241–7. https://doi.org/10.1002/eji.201141899; PMid:21956693
Adib M, Ragimbeau J, Avrameas S, Ternynck T. (1990). IgG autoantibody activity in normal mouse serum is controlled by IgM. J Immunol. 145(11):3807–13. PMid:2246515
Arne Tiselius. (1938). An electrophoretic study of immune sera and purified antibody preparations. 69: 119–131
Avrameas S. (1991). Natural autoantibodies: from 'horror autotoxicus' to 'gnothi seauton'. Immunol Today 12(5): 154–9. https://doi.org/10.1016/0167-5699(91)90080-D; https://doi.org/10.1016/S0167-5699(05)80045-3
Baker N, Ehrenstein MR. (2002). Cutting edge: selection of B lymphocyte subsets is regulated by natural IgM. J Immunol 169(12): 6686–90. https://doi.org/10.4049/jimmunol.169.12.6686; PMid:12471099
Baumgarth N. (2011). The double life of a B-1 cell: self_reactivity selects for protective effector functions. Nat Rev Immunol 11(1): 34–46. https://doi.org/10.1038/nri2901; PMid:21151033
Baxendale HE, Johnson M, Stephens RC, Yuste J, Klein N, Brown JS et al. (2008). Natural human antibodies to pneumococcus have distinctive molecular characteristics and protect against pneumococcal disease. Clin Exp Immunol. 151(1): 51–60. https://doi.org/10.1111/j.1365-2249.2007.03535.x; PMid:17983446 PMCid:PMC2276916
Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. (2004). Intravenous immunoglobulin for infectious diseases: back to the pre_antibiotic and passive prophylaxis era? Trends Pharmacol. Sci. 25: 306–310. https://doi.org/10.1016/j.tips.2004.04.002; PMid:15165745.
Bayry J, Negi VS, Kaveri SV. (2011). Intravenous immunoglobulin therapy in rheumatic diseases. Nat. Rev. Rheumatol. 7: 349–359. https://doi.org/10.1038/nrrheum.2011.61; PMid:21556030.
Bieber AJ, Warrington A, Asakura K, Ciric B, Kaveri SV, Pease LR, Rodriguez M. (2002). Human antibodies accelerate the rate of remyelination following lysolecithin-induced demyelination in mice. Glia. 37: 241–249. https://doi.org/10.1002/glia.10033; PMid:11857682.
Boes M, Schmidt T, Linkemann K, Beaudette BC, Marshak_Rothstein A, Chen J. (2000). Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci USA. 97(3): 1184–9. https://doi.org/10.1073/pnas.97.3.1184; PMid:10655505
Casali P, Burastero SE, Nakamura M, Inghirami G, Notkins AL. (1987). Human lymphocytes making rheumatoid factor and antibody to ssDNA belong to Leu-1+ B-cell subset. Science. 236(4797): 77–81. https://doi.org/10.1126/science.3105056; PMid:3105056
Casali, P., and Notkins, A. L. (1989). CD5+ B lymphocytes, polyreactive antibodies and the human Bcell repertoire. Immunol. Today. 10: 364–368. https://doi.org/10.1016/0167-5699(89)90268-5
Chen Y, Khanna S, Goodyear CS, Park YB, Raz E, Thiel S, et al. (2009). Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J Immunol. 183(2): 1346–59. https://doi.org/10.4049/jimmunol.0900948; PMid:19564341 PMCid:PMC2713016
Chen Y, Park YB, Patel E, Silverman GJ. (2009). IgM antibodies to apoptosisassociated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J Immunol. 182(10): 6031–43. https://doi.org/10.4049/jimmunol.0804191; PMid:19414754 PMCid:PMC4428684
De-Gennaro L. A., Popi A. F. 1, de Almeida S. A. et al. (2009). B-1 cells modulate oral tolerance in mice. Immunol. Lett. 124: 63–69. https://doi.org/10.1016/j.imlet.2009.04.003; PMid:19389426
Diamond G, Beckloff N, Ryan LK. (2008). Host defense peptides in the oral cavity and the lung: similarities and differences. Journal of dental research. 87(10): 915–927. https://doi.org/10.1177/154405910808701011; PMid:18809744 PMCid:PMC2730219
Ehrenstein MR, Cook HT, Neuberger MS. (2000). Deficiency in serum immunoglobulin (Ig)M predisposes to development of IgG autoantibodies. J Exp Med. 191(7): 1253–8. https://doi.org/10.1084/jem.191.7.1253; PMid:10748243 PMCid:PMC2193170
Elkon K, Casali P. (2008). Nature and functions of autoantibodies. Nat. Clin. Pract. Rheumatol. 4: 491–498. https://doi.org/10.1038/ncprheum0895; PMid:18756274 PMCid:PMC2703183.
Fernandez Gonzalez S, Jayasekera JP, Carroll MC. (2008). Complement and natural antibody are required in the long-term memory response to influenza virus. Vaccine. 26; Suppl 8: I86–I93. https://doi.org/10.1016/j.vaccine.2008.11.057; PMid:19388171.
Griffin DO, Holodick NE, Rothstein TL. (2011). Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70-. J Exp Med. 208(1): 67–80. https://doi.org/10.1084/jem.20101499; PMid:21220451 PMCid:PMC3023138
Gronwall C, Vas J, Silverman GJ. (2012). Protective roles of natural IgM antibodies. Front Immunol. 3: 66. https://doi.org/10.3389/fimmu.2012.00066; PMid:22566947 PMCid:PMC3341951
Hardy RR, Hayakawa K, Shimizu M, Yamasaki K, Kishimoto T. (1987). Rheumatoid factor secretion from human Leu-1+ B cells. Science. 236(4797): 81–3. https://doi.org/10.1126/science.3105057; PMid:3105057
Haring H. U., Kellerer M., Mosthaf L. (1994). Modulation of insulin receptor signalling: signifi cance of altered receptor isoform patterns and mechanism of hyperglycaemia-induced receptor modulation. Diabetologia. 37; Suppl 2: 149–154. https://doi.org/10.1007/BF00400838
Hernandez AM, Rodriguez N, Gonzalez JE, Reyes E, Rondon T, Grinan T, Macias A, Alfonso S, Vazquez AM, Perez R. (2011). Anti-NeuGcGM3 Antibodies, Actively Elicited by Idiotypic Vaccination in Nonsmall Cell Lung Cancer Patients, Induce Tumor Cell Death by an Oncosis-Like Mechanism. J. Immunol. 186: 3735–3744. https://doi.org/10.4049/jimmunol.1000609; PMid:21300821.
Heyman B, Pilstrom L, Shulman MJ. (1988). Complement activation is required for IgM-mediated enhancement of the antibody response. J. Exp. Med. 167: 1999–2004. https://doi.org/10.1084/jem.167.6.1999; PMid:3385360.
Heyman B. (2000). Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu. Rev. Immunol. 18: 709–737. https://doi.org/10.1146/annurev.immunol.18.1.709; PMid:10837073.
Honjo K, Kubagawa Y, Jones DM, Dizon B, Zhu Z, Ohno H et al. (2012). Altered Ig levels and antibody responses in mice deficient for the Fc receptor for IgM (FcmuR). Proc Natl Acad Sci USA. 109(39): 15882–7. https://doi.org/10.1073/pnas.1206567109; PMid:22984178 PMCid:PMC3465379
Hurez V, Kazatchkine MD, Vassilev T, Ramanathan S, Pashov A, Basuyaux B et al. (1997). Pooled normal human polyspecific IgM contains neutralizing antiidiotypes to IgG autoantibodies of autoimmune patients and protects from experimental autoimmune disease. Blood 90(10): 4004–13. PMid:9354669
Jayasekera JP, Moseman EA, Carroll MC. (2007). Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J. Virol. 81: 3487–3494. https://doi.org/10.1128/JVI.02128-06; PMid:17202212 PMCid:PMC1866020.
Kaetzel CS. (2005). The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol. Rev. 206: 83–99. https://doi.org/10.1111/j.0105-2896.2005.00278.x; PMid:16048543.
Kinoshita M, Shinomiya N, Ono S, Tsujimoto H, Kawabata T, Matsumoto A, Hiraide H, Seki S. (2006). Restoration of natural IgM production from liver B cells by exogenous IL-18 improves the survival of burn-injured mice infected with Pseudomonas aeruginosa. J. Immunol. 177: 4627–4635. https://doi.org/10.4049/jimmunol.177.7.4627; PMid:16982901.
Kohler H, Bayry J, Nicoletti A, Kaveri SV. (2003). Natural autoantibodies as tools to predict the outcome of immune response? Scand. J. Immunol. 58: 285–289. https://doi.org/10.1046/j.1365-3083.2003.01314.x; PMid:12950673.
Kubagawa H, Oka S, Kubagawa Y, Torii I, Takayama E, Kang DW, Gartland GL, Bertoli LF, Mori H, Takatsu H, Kitamura T, Ohno H, Wang JY. (2009). Identity of the elusive IgM Fc receptor (FcμR) in humans. J. Exp. Med. 206: 2779–2793. https://doi.org/10.1084/jem.20091107; PMid:19858324 PMCid:PMC2806608.
Kuranaga N, Kinoshita M, Kawabata T, Habu Y, Shinomiya N, Seki S. (2006). Interleukin-18 protects splenectomized mice from lethal Streptococcus pneumoniae sepsis independent of interferongamma by inducing IgM production. J. Infect. Dis. 194: 993–1002. https://doi.org/10.1086/507428; PMid:16960788.
Lino AC, Mohr E, Demengeot J. (2013). Naturally secreted immunoglobulins limit B1 and MZ B-cell numbers through a microbiota-independent mechanism. Blood. 122(2): 209–18. https://doi.org/10.1182/blood-2012-08-447136; PMid:23723451
Lobo PI, Brayman KL, Okusa MD. (2014). Natural IgM anti-leucocyte autoantibodies (IgM-ALA) regulate inflammation induced by innate and adaptive immune mechanisms. J Clin Immunol. 34; Suppl 1: S22-9. https://doi.org/10.1007/s10875-014-0027-2; PMid:24711004 PMCid:PMC4096817
Lobo PI, Schlegel KH, Bajwa A, Huang L, Kurmaeva E, Wang B et al. (2015). Natural IgM switches the function of lipopolysaccharide-activated murine bone marrow-derived dendritic cells to a regulatory dendritic cell that suppresses innate inflammation. J Immunol. 195(11): 5215–26. https://doi.org/10.4049/jimmunol.1500052; PMid:26519533 PMCid:PMC4655187
Lobo PI, Schlegel KH, Spencer CE, Okusa MD, Chisholm C, McHedlishvili N et al. (2008). Naturally occurring IgM anti-leukocyte autoantibodies (IgM-ALA) inhibit T cell activation and chemotaxis. J Immunol. 180(3): 1780–91. https://doi.org/10.4049/jimmunol.180.3.1780; https://doi.org/10.4049/jimmunol.180.3.1769
Lobo PI. (1981). Nature of autolymphocytotoxins present in renal hemodialysis patients: their possible role in controlling alloantibody formation. Transplantation 32(3): 233–7. https://doi.org/10.1097/00007890-198109000-00010; PMid:7025372
Love SD, Lee W, Nakamura YC, Platt JL, Bollinger RR, Parker W. (2000). Natural anti-carbohydrate IgM in mice: dependence on age and strain. J Immunol Methods. 246(1): 61–8. https://doi.org/10.1016/S0022-1759(00)00296-9
Mulens V, de la Torre A, Marinello P, Rodriguez R, Cardoso J, Diaz R, O'Farrill M, Macias A, Viada C, Saurez G, Carr A, Crombet T, Mazorra Z, Perez R, Fernandez LE. (2010). Immunogenicity and safety of a NeuGcGM3 based cancer vaccine: Results from a controlled study in metastatic breast cancer patients. Hum. Vaccin. 6: 736–744. https://doi.org/10.4161/hv.6.9.12571
Nicoletti C, Yang X, Cerny J. (1993). Repertoire diversity of antibody response to bacterial antigens in aged mice. III. Phosphorylcholine antibody from young and aged mice differ in structure and protective activity against infection with Streptococcus pneumoniae. J Immunol. 150(2): 543–9. PMid:8419487
Norrby-Teglund A, Haque KN, Hammarstrom L. (2006). Intravenous polyclonal IgM-enriched immunoglobulin therapy in sepsis: a review of clinical efficacy in relation to microbiological aetiology and severity of sepsis. J. Intern. Med. 260: 509–516. https://doi.org/10.1111/j.1365-2796.2006.01726.x; PMid:17116001
Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinkernagel RM. (1999). Control of early viral and bacterial distribution and disease by natural antibodies. Science. 286: 2156–2159. https://doi.org/10.1126/science.286.5447.2156; PMid:10591647.
Ouellette AJ. (1999). Paneth cell antimicrobial peptides and the biology of the mucosal barrier. The American journal of physiology. 277; 2; Pt 1: G257–261. https://doi.org/10.1152/ajpgi.1999.277.2.G257
Pitman RS, Blumberg RS. (2000). First line of defense: the role of the intestinal epithelium as an active component of the mucosal immune system. J Gastroenterol. 35(11): 805–814. https://doi.org/10.1007/s005350070017 ; PMid:11085489
Poletaev A.B., Churilov L.P. (2010). Immunophysiology, natural autoimmunity and human health. (Th essaloniki). 6: 11–18.
Poletaev A., Boura P. (2011). The immune system, natural autoantibodies and general homeostasis in health and disease. Hippokratia. 15: 295–298. PMid:24391407 PMCid:PMC3876841
Rapaka RR, Ricks DM, Alcorn JF, Chen K, Khader SA, Zheng M, Plevy S, Bengten E, Kolls JK. (2010). Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J. Exp. Med. 207: 2907–2919. https://doi.org/10.1084/jem.20100034; PMid:21149550 PMCid:PMC3005228.
Rieben R, Roos A, Muizert Y, Tinguely C, Gerritsen AF, Daha MR. (1999). Immunoglobulin M-enriched human intravenous immunoglobulin prevents complement activation in vitro and in vivo in a rat model of acute inflammation. Blood. 93(3): 942–51. PMid:9920844
Shibuya A, Sakamoto N, Shimizu Y, Shibuya K, Osawa M, Hiroyama T, Eyre HJ, Sutherland GR, Endo Y, Fujita T, Miyabayashi T, Sakano S, Tsuji T, Nakayama E, Phillips JH, Lanier LL, Nakauchi H. (2000). Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat. Immunol. 1: 441–446. https://doi.org/10.1038/80886; PMid:11062505.
Shima H, Takatsu H, Fukuda S, Ohmae M, Hase K, Kubagawa H, Wang JY, Ohno H. (2010). Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int. Immunol. 22: 149–156. PubMed: 20042454. https://doi.org/10.1093/intimm/dxp121
Silverman, G. J., Gronwall, C., Vas, J., and Chen, Y. (2009). Natural autoantibodies to apoptotic cell membranes regulate fundamental innate immune functions and suppress inflammation. Discov. Med. 8: 151–156. PMid:19833064
Simell B, Lahdenkari M, Reunanen A, Kayhty H, Vakevainen M. (2008). Effects of ageing and gender on naturally acquired antibodies to pneumococcal capsular polysaccharides and virulence-associated proteins. Clin Vaccine Immunol. 15(9): 1391–7. https://doi.org/10.1128/CVI.00110-08; PMid:18596205 PMCid:PMC2546667
Song J, Duncan MJ, Li G, Chan C, Grady R, Stapleton A et al. (2007). A novel TLR4_mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog. 3(4): e60. https://doi.org/10.1371/journal.ppat.0030060; PMid:17465679 PMCid:PMC1857715
Stager S, Alexander J, Kirby AC, Botto M, Rooijen NV, Smith DF, Brombacher F, Kaye PM. (2003). Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T-cell responses. Nat. Med. 9: 1287–1292. https://doi.org/10.1038/nm933; PMid:14502281.
Stehr SN, Knels L, Weissflog C, Schober J, Haufe D, Lupp A, Koch T, Heller AR. (2008). Effects of IGMenriched solution on polymorphonuclear neutrophil function, bacterial clearance, and lung histology in endotoxemia. Shock. 29: 167–172. PMid:17666945.
Tsai KW, Lai HT, Tsai TC, Wu YC, Yang YT, Chen KY et al. (2009). Difference in the regulation of IL-8 expression induced by uropathogenic E. coli between two kinds of urinary tract epithelial cells. Journal of biomedical science. 16: 91. https://doi.org/10.1186/1423-0127-16-91; PMid:19799797 PMCid:PMC2762471
Varambally S, Bar-Dayan Y, Bayry J, Lacroix-Desmazes S, Horn M, Sorel M, Ruberti G, Kazatchkine MD, Kaveri SV. (2004). Natural human polyreactive IgM induce apoptosis of lymphoid cell lines and human peripheral blood mononuclear cells. Int. Immunol. 16: 517–524. https://doi.org/10.1093/intimm/dxh053; PMid:14978025.
Vassilev T, Mihaylova N, Voynova E, Nikolova M, Kazatchkine M, Kaveri S. (2006). IgM-enriched human intravenous immunoglobulin suppresses T lymphocyte functions in vitro and delays the activation of T lymphocytes in hu-SCID mice. Clin. Exp. Immunol. 145: 08–115. PubMed: 16792680.
Vittecoq O, Brard F, Jovelin F, Le Loet X, Tron F, Gilbert D. (1999). IgM anti-myeloperoxidase antibody-secreting lymphocytes are present in the peripheral repertoire of lupus mice but rarely differentiate into IgG-producing cells. Clin Exp Immunol. 118(1): 122–30. https://doi.org/10.1046/j.1365-2249.1999.00995.x; PMCid:PMC1905406
Walpen AJ, Laumonier T, Aebi C, Mohacsi PJ, Rieben R. (2004). Immunoglobulin M-enriched intravenous immunoglobulin inhibits classical pathway complement activation, but not bactericidal activity of human serum. Xenotransplantation. 11: 141–148. https://doi.org/10.1046/j.1399-3089.2003.00098.x; PMid:14962276.
Warrington AE, Asakura K, Bieber AJ, Ciric B, Van Keulen V, Kaveri SV, Kyle RA, Pease LR, Rodriguez M. (2000). Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc. Natl. Acad. Sci. USA. 97: 6820–6825. https://doi.org/10.1073/pnas.97.12.6820; PMid:10841576.
Watzlawik J, Holicky E, Edberg DD, Marks DL, Warrington AE, Wright BR, Pagano RE, Rodriguez M. (2010). Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia. 58: 1782–1793. https://doi.org/10.1002/glia.21048; PMid:20645409 PMCid:PMC2967300.
Wenwei Shao, Fanlei Hu, Junfan Ma, Chi Zhang, Qinyuan Liao, Zhu Zhu, Enyang Liu, Xiaoyan Qiu. (2016). Epithelial cells are a source of natural IgM that contribute to innate immune responses, The International Journal of Biochemistry & Cell Biology. 73(19). https://doi.org/10.1016/j.biocel.2016.01.017
Zhou ZH, Zhang Y, Hu YF, Wahl LM, Cisar JO, Notkins AL. (2007). The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe. 1: 51–61. https://doi.org/10.1016/j.chom.2007.01.002;